基于SDN的网络状态测量

2016-01-27 by muzi

为了更好地管理和运行网络,非常有必要收集网络资源及其状态信息。在很多网络场景中,SDN控制器的决策都取决时延,带宽和拓扑等网络状态。在开发SDN应用的过程中,笔者总结了一些有用的网络状态测量的解决方案,可以为初学者在解决网络问题时提供一些启发。本文将主要介绍如何通过SDN控制器和OpenFlow协议来测量和收集网络中的时延、带宽以及拓扑状态等信息。

时延

时延的测试在终端会显得很容易,但是在交换机节点上测试时延就比较麻烦。在SDN中,可以通过一下步骤实现交换机之间链路的时延。

(1)控制器向交换机A下发一个Packet_out报文。报文的数据段携带了任意一个约定好的协议报文,其报文的数据段携带了控制器下发报文时的时间戳。Packet_out报文的动作指示交换机将其泛洪或者转发到某端口。

(2)交换机B收到了交换机A发送过来的数据包,无法匹配对应流表项,从而packet_in到控制器。控制器接收到这个数据包之后,和当下时间相减,得到时间差T1。其时间差约等于数据包从控制器到交换机A + 交换机A到交换机B + 交换机B到控制器的时延。

(3)同理,控制器向交换机B发送一个类似的报文。然后控制器从交换机A收到Packet_in报文,记录下时间差T2。所以T1+T2=控制器到交换机A的RTT+控制器到交换机B的RTT+交换机A到交换机B的时延RTT。

(4)控制器向交换机A和交换机B分别发送带有时间戳的Echo request。交换机收到之后即刻回复携带echo request时间戳的echo reply消息。所以控制器可以通过Echo reply的时间戳减去Echo reply携带的时间,从而得到对应交换机和控制器之间的RTT ...

read more

如何提升SDN可拓展性

2016-01-20 by muzi

Software Defined Networking是一种控制平面和数据平面分离的可编程的网络架构,目前已经有许多商业落地案例。在部署SDN时,往往会因SDN控制器性能不足而限制了SDN的可拓展性。因此SDN网络的规模往往不大。针对此问题,笔者在研究相关文献之后,总结了相关的解决方案,并通过本文来记录和分享。

解决方案

SDN分离了网络的控制平面和数据平面,而控制平面是SDN的大脑,其能力极大地影响着SDN网络的可拓展性。所以基本上,解决方案都是围绕如何给控制平面减压或者提升控制平面的能力来实现。根据控制器数目的不同,解决方案可以分为如下两类:

  • 单控制器节点的性能拓展
  • 部署多控制器系统

单控制器节点的性能拓展

单控制器节点的性能拓展是最常见的方式之一,包括控制器采用多线程,负载下放等解决方案。多线程等解决方案属于软件开发范畴,不属于本文讨论范围。通过负载下放(offload)等方式可以降低网络对控制平面的依赖,减少控制平面的负载和压力,从而可以管理更多的交换机,进而提升SDN网络的可拓展性。DIFANE和DoveFlow就是典型的代表。

DIFANE[1]是DIstributed Flow Architecture for Networked Enterprises的缩写。 在DIFANE架构中,其数据平面的所有数据均由数据平面完成,而控制器仅负责策略的计算,而不会直接响应Packet_in。其通过减轻控制平面的负载的方式,从而增强了SDN的可拓展性。

difane
图1.DIFANE ...

read more

SDN与网络虚拟化

2015-12-29 by muzi

网络虚拟化是一种重要的网络技术,该技术可在物理网络上虚拟多个相互隔离的虚拟网络,从而使得不同用户之间使用独立的网络资源切片,从而提高网络资源利用率,实现弹性的网络。SDN的出现使得网络虚拟化的实现更加灵活和高效,同时网络虚拟化也成为SDN应用中的重量级应用。本文将介绍SDN与网络虚拟化的关系以及通过SDN实现网络虚拟化的方法,其中第二部分内容将从虚拟化平台,网络资源虚拟化和网络隔离三个方面介绍。

SDN与网络虚拟化

由于早期成功的的SDN方案中网络虚拟化案例较多,有的读者可能会认为SDN和网络虚拟化是同一个层面的,然而这是一个错误的说法。SDN不是网络虚拟化,网络虚拟化也不是SDN。SDN是一种集中控制的网络架构,可将网络划分为数据层面和控制层面。而网络虚拟化是一种网络技术,可以在物理拓扑上创建虚拟网络。传统的网络虚拟化部署需要手动逐跳部署,其效率低下,人力成本很高。而在数据中心等场景中,为实现快速部署和动态调整,必须使用自动化的业务部署。SDN的出现给网络虚拟化业务部署提供了新的解决方案。通过集中控制的方式,网络管理员可以通过控制器的API来编写程序,从而实现自动化的业务部署,大大缩短业务部署周期,同时也实现随需动态调整。

随着IaaS的发展,数据中心网络对网络虚拟化技术的需求将会越来越强烈。SDN出现不久后,SDN初创公司Nicira就开发了网络虚拟化产品NVP(Network Virtualization Platform)。Nicira被VMware收购之后,VMware结合NVP和自己的产品vCloud Networking and Security (vCNS),推出了VMware的网络虚拟化和安全产品NSX。NSX可以为数据中心提供软件定义化的网络虚拟化服务。由于网络虚拟化是SDN早期少数几个可以落地的应用,所以大众很容易将网络虚拟化和SDN弄混淆。正如前面所说 ...

read more

基于流量的SDN最短路径转发应用

2015-11-30 by muzi

网络的转发是通信的基本功能,其完成信息在网络中传递,实现有序的数据交换。通过SDN控制器的集中控制,可以轻松实现基础的转发算法有二层MAC学习转发和基于跳数的最短路径算法。然而,网络跳数并不是决定路径优劣的唯一状态。除了跳数以外,还有带宽,时延等标准。本文将介绍如何通过SDN控制器Ryu开发基于流量的最短路径转发应用。

Forwarding Algorithm

目前基于流量的路由算法基本的解决思路有两种:

(1) 首先基于跳数计算最优K条路径,然后在这些路径中选择可用带宽最大的路径。

(2) 首先基于跳数计算最优路径,归一化路径的评价分数,然后基于流量计算最优路径,归一化基于带宽的评价;设置跳数和带宽的权重,对基于跳数和带宽的评分求其加权总和;按照加权求和值降序排序,取前K条作为最优评价路径。

本文以第一种算法为例,介绍基于网络流量的最短路径转发应用开发。第二种算法基于前者的基础修改即可完成。

Network Awareness

首先我们需要编写一个网络感知应用,用于发现网络的资源,包括节点,链路,终端主机等。并根据拓扑信息计算基于条数的最短路径。开发此应用基本步骤如下:

  • 创建继承app_manager.RyuApp的应用network_awareness
  • 从topology.switches获取拓扑信息,包括交换机节点信息,链路信息
  • 使用Networkx 创建拓扑图的对象,用于存储网络拓扑
  • 使用Networkx的函数all_simple_paths(G, source ...
read more

基于Ryu打造自定义控制器

2015-11-20 by muzi

控制器是SDN网络中最重要的组成部分。在开发SDN应用时,需要基于某一个控制器开发,而大部分开源控制器都是一个框架或者平台,更多个性化的设置和应用需要开发者自己完成。对于开发者而言,一个自定义的控制器可以让控制器更加适配开发场景,发挥控制器最大的作用,提高开发效率。本篇文章将以Ryu为例,介绍如何修改Ryu源码,打造属于自己风格的自定义控制器。其内容包括自定义参数,事件,启动顺序,报文,协议和底层服务。

自定义参数

很多应用都会涉及相关参数的输入才能运行, 如OpenFlow协议的启动需要配置监听端口。在编写新应用时,需要获取相关参数的值来运行应用,所以需要开发应用时注册参数。目前已有的参数可以通过ryu-manager -h查看。而不同的应用注册的参数很可能名字一样,这就有可能发生冲突。为解决这个问题,Ryu采用了OpenStack的Oslo库,支持全局的命令注册和解析。Oslo支持全局的命令注册和解析,成功解除了命令冲突的难题,也大大降低了参数注册和解析的难度。注册新参数的方法很简单,只需要新建一个文件,然后按照如下案例完成注册,最后再在cmd/manager.py中import即可。

from ryu import cfg

CONF = cfg.CONF
CONF.register_cli_opts([
    cfg.StrOpt ...
read more